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A key problem in QSAR is the selection of appropriate descriptors to form accurate regression
equations for the compounds under study. Inductive logic programming (ILP) algorithms are
a class of machine-learning algorithms that have been successfully applied to a number of
SAR problems. Unlike other QSAR methods, which use attributes to describe chemical structure,
ILP uses relations. This gives ILP the advantages of not requiring explicit superimposition of
individual compounds in a dataset, of dealing naturally with multiple conformations, and of
using a language much closer to that used normally by chemists. We unify ILP and standard
regression techniques to give a QSAR method that has the strength of ILP at describing steric
structure with the familiarity and power of regression methods. Complex pharmacophores,
correlating with activity, were identified and used as new indicator variables, along with the
comparative molecular field analysis (CoMFA) prediction, to form predictive regression
equations. We compared the formation of 3D-QSARs using standard CoMFA with the use of
ILP on the well-studied thermolysin zinc protease inhibitor dataset and a glycogen phos-
phorylase inhibitor dataset. In each case the addition of ILP variables produced statistically
better results (P < 0.01 for thermolysin and P < 0.05 for GP datasets) than the CoMFA analysis.
Moreover, the new ILP variables were not found to increase the complexity of the final QSAR
equations and gave possible insight into the binding mechanism of the ligand-protein complex
under study.

Introduction

The problem of learning structure-property relation-
ships is central to all applications of molecular design.
In particular, in the biological sciences, quantitative
structure-activity relationships (QSARs) have been
studied for many years in order to either elucidate
biological processes or develop new drugs. These studies
are based on the concept that a biological (or pharma-
ceutical) effect caused by a given molecule (drug) is a
function of its chemical structure.

Most existing SAR methods describe chemical struc-
ture using attributes, which are general properties of
objects. For example, in the traditional Hansch ap-
proach to QSARs1,2 the attributes are properties such
as log P and π, which are global properties of the
molecule or substituted group, whereas in the CoMFA3

approach to QSARs, the attributes are properties of
points in space that are global properties of the coordi-
nate system used. Compounds are described as lists of
attributes. This form of data representation is not well
suited to describing the steric structure of molecules
because it is difficult to map efficiently atoms and their
bond connectivities onto a list. This is due to difficulty
in defining a natural bond order and the different sizes

of molecules. One intuitive approach to the problem is
to use the eigenvalues of adjacency matrices.4 Our ap-
proach is to use relations to describe objects and to learn
QSARs using an inductive logic programming (ILP)
system (specifically Aleph developed by A. Srinivasan,
which supersedes P-Progol;5 the program Aleph is
available at http://www.comlab.ox.ac.uk/oucl/research/
areas/machlearn/Aleph/aleph.pl). In a relational de-
scription, the basic elements are relations between
objects (i.e., logic programs, a general form of computer
program). Formally, the difference in descriptive lan-
guage between attributes and relations corresponds to
the difference between propositional and first-order
predicate logic. Existing learning methods for QSARs
are all based on propositional logic. ILP uses the more
powerful representation language of predicate logic,
equivalent to the ability to learn general computer
programs, for prediction. To illustrate the difference
between attributes and relations, consider the following
hypothesis: an active compound requires a double bond
conjugated to an aromatic ring. Such a hypothesis could
be directly discovered and represented by a relational
QSAR system using only simple atom and bond types
(e.g., atom A in an aromatic ring is connected by a single
bond to atom B, which is connected by a double bond to
atom C). It could not be found or represented in an
attribute-based language without specifically precoding
the attribute “double bond conjugated with an aromatic
ring”. The increased generality gained using relations
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allows a more direct mapping from the chemical steric
structure to its representation. In this relational rep-
resentation, we can deal with multiple low-energy
conformations because there is no need to explicitly
prealign individual compounds to a common 3D spatial
reference nor is it necessary to use a large number of
points to define the fields because they could be implic-
itly defined using a relation (logic program). Moreover,
comprehensible results are more easily produced be-
cause the use of logical relations provides a richer
language to describe drug binding. Initial work was
done using the program Golem to form SARs for the
inhibition of dihydrofolate reductase by pyrimidines and
triazines.6-8 This work was extended by the develop-
ment of the program Progol and applied to predicting
the mutagenicity9 of a series of structurally diverse nitro
compounds. Finally ILP was used to predict toxicity of
compounds10 and in the first attempt of pharmacophore
discovery.11

The aims of this study were to test whether ILP
methods could be used in a pharmacophore discovery
task and to form new indicator variables for regression
equations in QSAR to improve the results obtained from
standard SAR methods. This study is the first attempt
that compares results obtained with ILP and conven-
tional 3D-QSAR.

We used two datasets to evaluate our method: the
well-studied thermolysin zinc protease inhibitor dataset
and a glycogen phosphorylase b (GP) inhibitor dataset.
Thermolysin inhibitors were chosen for two reasons: (1)
the structures of native thermolysin and several com-
plexes with bound inhibitors are available, which allows
us to structurally evaluate the computational results;
(2) there are a number of inhibitors of thermolysin
available from the literature, which can be modeled and
added to the dataset. GP inhibitors were also chosen
because the X-ray crystal structures of each ligand-
GP complex, and corresponding biochemical data, had
been determined during a project that aimed to obtain
inhibitors of GP with potential therapeutic activity as
antidiabetic drugs.12,13

We conclude that ILP enables pharmacophore map-
ping and QSAR formation that avoids the aforemen-
tioned problem typically encountered in standard SAR
methods. In this paper, we first introduce the dataset
and the methods used. Second, the results using the
three lowest conformations are presented for both
datasets. Third, the results using the 10 lowest con-
formers for each dataset are described and the QSARs
obtained with CoMFA and ILP indicator variables are
discussed.

Materials and Methods

A. Data. A.1. Thermolysin Dataset. Thermolysin, isolated
from Bacillus thermoproteolyticus, is a zinc requiring endo-
peptidase of Mr 34 600. Overall, the tertiary structure of
thermolysin consists of two spherical domains separated by a
deep cleft that constitutes the active site. Such zinc-containing
proteases are widely distributed in nature and play an
important role in numerous physiological processes such as
digestion and blood pressure regulation. Crystal structures of
12 inhibitors (Table 1) bound to the active site of thermolysin
were extracted from the Protein Data Bank.14 The correspond-
ing activity values15-23 (pKi ) -log Ki) ranged from 2.42 to
10.17. A Monte Carlo conformation analysis was performed

on these 12 inhibitors. Then a geometry optimization and
charge calculation of the 10 lowest conformers were performed
with the semiempirical AM1 method.24 An additional 19
inhibitors with Ki values ranging from 10-3 to 10-8 M were
taken from the literature (Table 2) and modeled as previously
described using the inhibitor-bound crystal structures as
templates (the references for these structures are given in
Table 2).

A.2. Glycogen Phosphorylase b (GP) Dataset. GP
inhibitors were chosen because the X-ray crystal structures
of each ligand-GP complex and their corresponding activities
are available.12 We used the same numbering and structures
as those used in the series of 51 glucose and thioglucose
derivatives reported in Table 1 of Pastor et al.25 The 51
glycogen phosphorylase inhibitors used have in common a
glucopyranose ring, with different substitution at the C1
position in the R and/or â configurations. The inhibitors varied
from small, simple monosaccharides such as R-D-glucose, to
large disaccharides such as gentiobiose, and most of them were
polar in nature. The activity of these molecules ranges from
10-2 to 10-6 M. To be consistent with the thermolysin dataset,
we performed an AM1 geometry optimization and charge
calculation of each of the lowest conformers found from a
Monte Carlo conformation analysis.

B. Algorithm Used. Inductive logic programming (ILP)
algorithms are a class of machine-learning algorithms that
have been successfully applied to a number of SAR problems.6-11

In ILP all the inputs and outputs are logical statements in
the computer language Prolog. Such statements are readily
understandable because they closely resemble natural lan-
guage. The input for an ILP method is a set of positive and

Table 1. Series of Inhibitors of Thermolysin Taken from the
Crystallographic Structuresa

molecule pKi (-log Ki) reference

bzs 2.42 15
cct 6.42 16
phosphoramidon 7.55 17
clt 7.30 18
pln 5.89 17
llnhoh 3.72 19
zfpla 10.17 20
honhbzmagna 6.37 19
zgll 8.04 20
zgpoll 5.04 21
bag 6.12 22
bppp 2.79 23

a Molecule names were assigned according to the reference
given.

Table 2. Thermolysin Inhibitors Dataseta

molecule pKi (-log Ki) reference

zgplda 5.77 38
zgplg 6.57 38
zgplla 7.78 38
zgplnh2 6.12 38
zgplf 7.11 38
zf 3.29 23
honhbzmagnh2 6.18 39
honhbzmoet 4.70 39
paaoh 4.05 40
piaoh 6.44 40
plfoh 7.72 40
pltoh 7.82 40
pfoh 4.14 40
zggdlnhoh 3.60 39
zggllnhoh 4.41 39
zggnhoh 3.03 39
zglnhoh 4.89 39
zglnmeoh 2.65 39
zlnhoh 5.00 39

a These inhibitors were taken from the literature and modeled
using the inhibitor-bound crystal structures as templates. Molecule
names are taken from the corresponding references given.
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negative examples defining compounds as active or inactive,
respectively, and background chemical knowledge. To dichoto-
mize the real-valued activities into two classes, we ordered
the examples on the basis of their corresponding biological
activity and considered the top half (high-activity compounds)
to be positive examples and the bottom half (low-activity
compounds) to be negative. The output of using an ILP method
is a set of hypotheses, expressed as a set of rules, that predict
the positive and negative examples using the background
knowledge. The best hypothesis is chosen to maximize the
compression function f(c) defined as f(c) ) P(c) - N(c) - L(c),
where P(c) is the number of positive examples that can be
proven by the clause c, taken together with the background
knowledge. N(c) is the number of negative examples that can
be proven in the same way, and L(c) is the size (number of
literals) of the clause c. After generation of a single rule, the
examples covered by the rule are removed from consider-
ation and other rules are generated until all examples are
removed or until no more statistically significant rules can be
found.

C. Background Knowledge for ILP. The background
knowledge represents the individual compounds in terms of
the chemical type of the component atoms and the connecting
bonds. These values were assigned using the atom types as
defined in the molecular modeling program Sybyl,26 version
6.7. The atoms of each molecule were typed automatically
according to their local chemical environment and bond type.
The electrostatic charges were extracted from the output of
the AM1 charge calculation performed with Spartan.27 Our ILP
methodology allows a full three-dimensional representation by
adding to the system background knowledge the coordinates
of the atoms plus basic knowledge of 3D geometry, i.e.,
Pythagoras’s theorem and simple trigonometry. During the
learning, Aleph focuses on a single positive example and
constructs a “bottom” clause containing everything, subject to
language constraints, that is true of that positive example
according to the background theory. The search then proceeds
by beginning with the “empty” pharmacophore (0 points) and
constructing progressively more complex pharmacophores in
the bottom clause. The complexity of the pharmacophores
comes from the number of points and the error on distances
that have been set prior to the search in the background
knowledge. The constructed pharmacophores are tested on the
remaining molecules. Thus, arbitrary complex pharmaco-
phores are identified using Aleph and become indicators of
activity in a QSAR. When learning pharmacophores, Aleph
carries out an internal search, in a computationally efficient
way, to find the best alignment for prediction. The alignment
carried out by the algorithm Aleph is on the internal coordi-
nates of each molecule instead of on Cartesian coordinates as
with CoMFA. The geometry of the molecule is represented by
pairwise distances between points.

In standard approaches, like CoMFA, it is necessary to first
explicitly superimpose individual compounds of a dataset, and
only after such prealignment to a common spatial reference
frame can learning take place. This has the problem that it
can be very difficult to superimpose heterogeneous compounds
such as those within the thermolysin inhibitor dataset. The
compound-specific knowledge for each of the lowest inhibitor
conformers of the dataset under study is represented by first-
order atomic formulas or Prolog facts of the form

which asserts that the molecule m1 in the conformation c1
has an atom a1 that is an oxygen at the position (x1, y1, z1)
in 3D space. This oxygen is sp2-hybridized and bears a negative
charge q1. Similarly, the relation

represents that in the conformation c1 of molecule m1 the bond
between atoms a1 and a2 is assigned a double bond. Using
this atom and bond description, we defined libraries of
elementary chemical concepts (literals). For example, the

following Prolog program fragment defines and can be used
to detect a hydroxamic acid group (C(dO)NHOH).

The predicate hydroxamic_acid states that a Molecule in the
conformation Conf represents an hydroxamic acid group
centered on Atom1 located at the X, Y, Z coordinates. If we
can find an Atom1 in the Molecule in the conformation Conf,
which is a carbon “c” atom at the X, Y, Z coordinates, this
carbon atom should be double-bonded to an sp2 (o_2) oxygen
“o” Atom0. Atom1 should also be single-bonded to an sp3 (n_3)
nitrogen “n” Atom2. Nitrogen Atom2 should form a single bond
with an sp3 oxygen, Atom3, which is itself single-bonded to a
hydrogen Atom4. We defined 35 new generic structural groups
compared with the five predicates of Finn and co-workers.11

Table 3 shows the 39 generic structural groups defined in our
background knowledge. The description of the pharmacophore
is given by a clause of the form

which asserts that a molecule M in the conformation Z is active
if it has a methyl group A and an hacc (hydrogen acceptor) B
and a carboxylic_acid C such that the distance between A and
B is 2.5 ( 1.0 Å, the distance between A and C is 3.0 ( 1.0 Å,
and the distance between B and C is 5.2 ( 1.0 Å. The predicate
active(M) defines the head of the clause and states that a

atm(m1, c1, a1, o, x1, y1, z1, 2, q1)

bond(m1, c1, b1, a1, a2, 2)

Table 3. General Chemical Knowledge Defined in the ILP
Method

hacc (hydrogen acceptor)
hdonor (hydrogen donor)

hydrophobic
neg_charge (negative charge)
pos_charge (positive charge)

alcohol hetero_non_aromatic_6c_ring
aldehyde hydroxamic_acid
alkyl_halide imine
amide ketone
amine methoxy
aromatic_5c_ring nitro
aromatic_6c_ring non_aromatic_5c_ring
ar_alcohol (aryl alcohol) non_aromatic_6c_ring
ar_halide (aryl halide) phosphorus_acid
carboxylate phosphorus_po2
carboxylic_acid phosphate_opo3
deoxy_amide sulfide
ester sulfo
ether sulfoamide
hetero_aromatic_5c_ring sulfone
hetero_aromatic_6c_ring sulfonic_acid
hetero_non_aromatic_5c_ring thiol

hydroxamic_acid(Molecule,Conf,Atom1,X,Y,Z):-

atm(Molecule,Conf,Atom1,c,X,Y,Z,_,_),

bond(Molecule,Conf,Atom1,Atom0,2),

atm(Molecule,Conf,Atom0,o,_,_,_,o_2,_),

bond(Molecule,Conf,Atom1,Atom2,1),

atm(Molecule,Conf,Atom2,n,_,_,_,n_3,_),

bond(Molecule,Conf,Atom2,Atom3,1),

atm(Molecule,Conf,Atom3,o,_,_,_,o_3,_),

bond(Molecule,Conf,Atom3,Atom4,1),

atm(Molecule,Conf,Atom4,h,_,_,_,_,_).

active(M):- methyl(M, Z, A), hacc(M, Z, B),
carboxylic_acid(M, Z, C), dist(M, A, B, 2.5, 1.0),

dist(M, A, C, 3.0, 1.0), dist(M, B, C, 5.2, 1.0).
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pharmacophore should be active, while the body specifies the
points of the pharmacophore (at least three points) via the
generic structural predicates (in this example, methyl, hacc,
carboxylic_acid) and specifies the distance between each pair
of points via the predicate dist.

D. Methodology. D.1. CoMFA. All CoMFA analyses were
done using Sybyl, version 6.7, running on a Silicon Graphics
Octane dual R12000 operating under Iris 6.5. For each dataset,
the superimposition procedure of the individual compounds
was performed by rms fitting of the backbone heavy atoms of
each ligand to the most active analogue compound. The steric
and electrostatic interactions for the CoMFA analyses were
calculated using an sp3 carbon probe atom carrying a charge
of +1.0 and a distance-dependent dielectric constant (1/r). The
CoMFA lattice was 28 Å × 28 Å × 24 Å. The cutoff value for
both the steric and electrostatic interactions was set to +30
kcal/mol. Regression analyses were done using the partial-
least-squares28 (PLS) methodology in conjunction with a full
(leave-one-out) cross-validation29 procedure.

D.2. ILP. We used the computer language Prolog to imple-
ment Aleph under the Yap Prolog compiler, version 4.1.19. The
range of activity was divided into two (half-half) intervals,
namely, “active” and “inactive” representing the positive and
negative examples, respectively. For each of these intervals,
including the background knowledge, ILP results in a set of
rules predicting the pharmacophore for active and inactive
classes. These rules are then used as new indicator variables,
i.e., Boolean attributes that are 1 when the pharmacophore is
displayed in the compound and 0 when it is absent, to form
QSARs. Standard regression methods such as PLS were used
to form QSARs with these new indicator variables. A linear
regression method, as implemented in WEKA,30 version 1.3.0,
was also used to select the best model and to predict the values
of the activity. We decided to use this method because the ILP
indicator variables are Boolean attributes that can cause
problems during the PLS run. The evaluation of a significant
improvement, by addition of the ILP indicator variables, is
calculated using a binomial test. Finally, QSARs obtained with
standard a CoMFA method and with CoMFA and ILP at-
tributes were compared.

Results

A. Results Using the Three Lowest Conforma-
tions. A.1. Thermolysin Inhibitors. We worked on
two models. Model A was based on the neutral ligands,
and to evaluate the QSARs with respect to changes in
the electronic nature of the ligands, we developed the
ionized model B. For the CoMFA superimposition, the
compounds were fit to the most active analogue com-
pound using the Zn-binding functional groups (i.e.,
carboxylate, hydroxamate, phosphonate, or sulfhydryl).
Several studies31,32 on thermolysin have attempted to
model the data. DePriest et al.,31 performing a PLS
analysis using only the CoMFA steric and electrostatic
fields as explanatory variables, reported a predicted
coefficient r2

CV ) 0.70 using 61 molecules. Waller et
al.,32 using the CoMFA analysis on the dataset of
DePriest et al., found r2

CV ) 0.536 and improved it to
0.596 by adding the HOMO fields. Hence, even slight
variations in molecular superimposition can lead to
different predicted coefficients. Our dataset of 31 mol-
ecules were entered as separate rows for each molecule
in a QSAR table along with their respective pKi values.
CoMFA steric and electrostatic fields were calculated,
as previously described in Materials and Methods, and
entered as columns in the QSAR table. An initial PLS
analysis, with a leave-one-out cross-validation, was
performed to determine the optimum numbers of com-
ponents using only the CoMFA steric and electrostatic
fields as explanatory variables. This was followed by a

non-cross-validated run using the optimum number of
components to derive a predictive model. Analysis of the
lowest conformation of 31 thermolysin inhibitors using
only CoMFA parameters produced a correlation having
a cross-validated r2

CV ) 0.61 and a conventional r2 )
0.99 using eight principal components for model A and
r2

CV ) 0.42 and r2 )0.93 using three principal compo-
nents for model B. The correlation coefficients obtained
are consistent with those obtained in previous stud-
ies.31,32 The most relevant interactions, as proposed in
the literature, between a substrate (e.g., zfpla) and the
enzyme are shown in Figure 1a.

A leave-one-out cross-validation procedure, with the
new indicator variables obtained from the ILP pharma-
cophore search on the three lowest conformers for
models A and B, selected the best model and constructed
regression equations relating activity to these new
attributes. Table 4 presents the results of models A and
B and the clausal representation of the pharmacophore
constructed using the ILP system. The addition of ILP
indicator variables has not made the regression equa-
tions any more complicated than those obtained with
standard methods. Moreover, easily interpretable re-
sults are produced and can easily give insight into the
drug-binding process.

For model A, ILP indicator variables led to a cross-
validated coefficient r2

CV ) 0.82 (Table 4a) that is
significantly better (P < 0.01) than our standard CoMFA
analysis r2

CV ) 0.61 for the same dataset. The regression
equation obtained is formed by the A4, A10, and A16
four-point pharmacophores represented by the boxed
regions labeled 1-4 in Figure 1b. It is straightforward
to interpret the coefficient of indicator variables in linear
QSAR equations because the magnitude indicates the
contribution of the presence of the corresponding struc-
tural feature. The interpretation of the ILP results (in
Table 4) for the successful inhibition of thermolysin
would be as follows. Pharmacophore A4 states that
neutral compounds should have (1) an amide group to
interact through the carboxyl oxygen to the side chain
nitrogens of residue Arg 203 and the hydrogen acceptor
binding site defined by Asn 112 and Ala 113, (2) a
neg_charge, i.e., a slightly negatively charged group (to
interact within the hydrophobic pockets S1 and S2) such
as a carbobenzoxyl moiety in which delocalization of the
π electrons can occur on the benzene ring, (3) an hacc
group located on one of the phosphonamide oxygens
close to Glu 143, which is strongly involved in the
catalysis,23 or on the terminal carboxylate group in
contact with the S′2 pocket and Asn 112, and (4) an
hdonor group corresponding to the second phosphon-
amide oxygen, which binds the zinc ion and accepts a
hydrogen bond from both Tyr 157 and His 231; this last
interaction stabilizes the tetrahedral intermediate dur-
ing catalysis.33,17 From the four-point pharmacophore
A10, compounds would be active if they have (1) two
hdonor groups binding with the hydrogen bond acceptor
site (amide oxygen of Ala 113, oxygen OD1 of Asn 112),
as also reported by Holden et al.,20 (2) a carboxylic_acid
located in the S′2 pocket, and (3) a slight neg_charge
atom corresponding to a methyl group of a leucine side
chain. Finally, the most informative pharmacophore
related to activity is represented by A16 because it
yields the highest regression coefficient. Pharmacophore
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Figure 1. (a) Schematic drawing of the interactions observed in the neutral zfpla-thermolysin (4TMN) complex where S1, S2,
S′1, and S′2 indicate the most significant regions of the active site of thermolysin. (b) Model A, neutral zfpla inhibitor with highlighted
four-point pharmacophores A4, A10, and A16 obtained using the ILP system of the three lowest conformations for each inhibitor
in the dataset. See text for detailed discussions of the boxed regions labeled 1-4. (c) Model B, ionic inhibitor zfpla with highlighted
four-point pharmacophores B3, B4 and B16 obtained using the ILP system for the three lowest conformations of each inhibitor
in the dataset.
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A16 asserts that molecules should present (1) an amide
group that can hydrogen-bond through the carboxyl
group to the side chain nitrogens of Arg 203 (as found
in A4), (2) an hdonor atom corresponding to the phos-
phonamide nitrogen (as in zfpla) or phosphoramide
nitrogen (as in plfoh and pltoh), (3) a methyl group, and
(4) a neg_charge atom belonging to the nonpolar ali-
phatic group R′1 of the ligand most likely interacting
with a leucine side chain in the active site.

Model B yielded a cross-validated coefficient r2
CV )

0.80 using only ILP attributes (Table 4b). Figure 1c
highlights the relevant four-point pharmacophores B3,
B4, and B16 found in both regression equations. B3
involves (1) an amine group corresponding to the pro-
tonated phosphonamide or phosphonamide nitrogen
that interacts with Glu 143, as reported in Kester et
al.,23 or potential interaction with the nitrogen atom of
the tryptophan R′2 side chain (found in compounds clt
and pltoh), (2) a hydrophobic group that is a phenyl-
alanine side chain, where the presence of this phenyl
group at the R1 position can interact more extensively

with the enzyme and is reported by Morihara et al.34 to
contribute strongly to ligand binding, or alternatively
it could be a leucine side chain in position R′1 of the
inhibitor (found in compounds phosphoramidon and
pltoh but not shown in Figure 1c), (3) a hacc atom
located on the carbonyl oxygen of the carbobenzoxyl
moiety of the inhibitor as displayed in zfpla, which
makes a hydrogen bond with the peptide of Trp 115 in
the S2 pocket, and (4) a pos_charge atom located on the
methyl group of the leucine side chain. B4 is represented
by (1) an amide group in the carbobenzoxyl moiety that
interacts with Trp 115 and Tyr 157, (2) a phosphorus
atom that potentially coordinates to the zinc ion, in
agreement with the work of DePriest et al.,31 and (3)
two neg_charge atoms on the phenyl ring of carbo-
benzoxyl moiety. The most informative pharmacophore
is B16 because it presents the highest regression coef-
ficient and it involves (1) a neg_charge atom corre-
sponding to one of the phosphonamide oxygens (PdO)
arising from the delocalization of the negative charge
on the second phosphonamide oxygen, (2) an hdonor
atom (phosphonamide nitrogen), (3) a methyl group from
the R′1 leucine side chain of the inhibitor, and (4) an
hdonor to interact with the side chain of nitrogens of
Arg 203.

The analysis with CoMFA and ILP descriptors using
the three lowest conformers led to correlations having
cross-validated coefficient r2

CV ) 0.85 (model A) and r2
CV

) 0.79 (model B). These are significantly better (P <
0.001) than those found using only the CoMFA at-
tributes. But in both models, the magnitude of the
CoMFA coefficient is small enough (0.01) to justify using
only our new ILP indicator variables in the analysis.

A.2. Glycogen Phosphorylase b Inhibitors. In the
work of Pastor et al.25 PLS models were obtained
without variable selection leading to cross-validated
squared correlation coefficient r2

CV ) 0.43 (without
taking into account water molecules) and r2

CV ) 0.45
(with water), with GRID/SRD (smart region definition)
GOLPE variable selection leading to r2

CV ) 0.79 (with-
out water), and with standard GRID/GOLPE variable
selection leading to r2

CV ) 0.76.12 The standard GRID/
GOLPE variable selection method is performed using a
D-optimal design in the loading space, followed by a
fractional factorial design (FFD) strategy with a fixing-
excluding procedure to test variable combinations on the
predictivity as described by Cruciani et al.13

Furthermore, the GRID/SRD GOLPE uses all these
variable-selection methods in addition to a smart region
definition25 to carry out the variable selection on groups
of variables chosen according to their positions in 3D
space, which further reduces the number of variables
and consequently yields a high cross-validated squared
correlation coefficient. Thus, the most appropriate com-
parison is between the cross-validated squared correla-
tion coefficient obtained using the standard GRID/
CoMFA method (r2

CV ) 0.43) of Pastor et al. and that
obtained using our ILP procedure. In the work of
Venkatarangan et al.35 using a series of modeled
glycogen phosphorylase inhibitors, a 4D-QSAR and
FEFF 3D-QSAR model was derived to construct ligand-
receptor binding models. In the 4D QSAR study, mul-
tiple conformers, alignments, and pharmacophores in
3D-QSAR model construction were explored in the

Table 4. Resulting QSARs Using the Three Lowest
Conformations of Thermolysin Inhibitors

(a) Model A

Regression Equation Obtained with Only ILP Attributes
r2

cvILP ) 0.82, pKi ) 3.62 + 0.95(A4) + 1.27(A10) + 1.82(A16)

ILP Clausal Representation of the Pharmacophore
A4

active(A):- amide(A,B,C),
neg_charge(A,B,D), dist(A,D,C,8.0,1.0)
hacc(A,B,E), dist(A,E,D,7.2,1.0), dist(A,E,C,4.1,1.0),
hdonor (A,B,F), dist(A,F,C,4.0,1.0),

dist(A,E,F,2.4,1.0), dist(A,D,F,7.7,1.0).

A10
active(A):- hdonor(A,B,C),

carboxylic_acid(A,B,D), dist(A,D,C,5.8,1.0),
hdonor(A,B,E), dist(A,E,D,2.5,1.0), dist(A,E,C,3.6,1.0),
neg_charge(A,B,F), dist(A,F,C,4.5,1.0),

dist(A,E,F,5.0,1.0), dist(A,D,F,5.6,1.0).

A16
active(A):- amide(A,B,C),

hdonor(A,B,D), dist(A,D,C,2.4,1.0),
methyl(A,B,E), dist(A,E,D,5.5,1.0), dist(A,E,C,6.7,1.0),
neg_charge(A,B,F), dist(A,F,C,2.4,1.0),

dist(A,E,F,2.5,1.0), dist(A,D,F,2.5,1.0).

(b) Model B

Regression Equation Obtained with Only ILP Attributes
r2

cvILP ) 0.80, pKi ) 3.88 + 1.91(B3) + 1.00(B4) + 2.07(B16)

ILP Clausal Representation of the Pharmacophore
B3

active(A):- amine(A,B,C),
hydrophobic(A,B,D), dist(A,D,C,6.5,1.0),
hacc(A,B,E), dist(A,E,D,4.4,1.0), dist(A,E,C,4.6,1.0),
pos_charge(A,B,F), dist(A,F,C,4.7,1.0),

dist(A,E,F,7.6,1.0), dist(A,D,F,10.6,1.0).

B4
active(A):- amide(A,B,C),

phosphorus(A,B,D), dist(A,D,C,3.8,1.0),
neg_charge(A,B,E), dist(A,E,D,4.3,1.0),

dist(A,E,C,4.6,1.0),
neg_charge(A,B,F), dist(A,F,C,5.7,1.0),

dist(A,E,F,2.4,1.0), dist(A,D,F,5.9,1.0).

B16
active(A):- neg_charge (A,B,C),

hdonor(A,B,D), dist(A,D,C,2.2,1.0),
methyl(A,B,E), dist(A,E,D,3.6,1.0), dist(A,E,C,4.1,1.0),
hacc(A,B,F), dist(A,F,C,5.5,1.0),

dist(A,E,F,4.9,1.0), dist(A,D,F,3.5,1.0).
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search for the active conformation and binding mode for
each compound. Because these studies include portions
of the protein, direct comparison to our ILP model is
difficult.

Watson et al.12 reported that the substrate binds at
the catalytic site of GP buried 15 Å from the surface
and stabilizes the inactive T state form of the enzyme
through specific interactions with a loop of residues
(280s loop) that can block access to the catalytic site.
Figure 2a highlights the main interactions of the most
potent inhibitor36,37 (3 µM) at the catalytic site of GP.
The CoMFA analysis in this work was done following
the same method as in the thermolysin dataset. Analy-
sis of the lowest conformation of 51 GP b inhibitors
using only CoMFA parameters produced a correlation
having a cross-validated r2

CV ) 0.61 and a conventional

r2 ) 0.98 using eight principal components. ILP indica-
tor variables yield a cross-validated coefficient r2

CV )
0.72 and led to P7, P14, and P23 four-point pharma-
cophores (Table 5; boxed regions labeled 1-4 shown in
Figure 2b). Our ILP procedure outperforms the standard
GRID/CoMFA of Pastor and co-workers and CoMFA
methods (r2

CV ) 0.43 and r2
CV ) 0.61, respectively) and

is not doing badly against the standard GOLPE and
SRD/GOLPE methods (r2

CV ) 0.76 and r2
CV ) 0.79,

respectively) that use variable-selection methods that
ILP does not. The highest coefficient is found for P7,
which asserts that an active compound would have (1)
an hdonor atom corresponding to the nitrogen atom of
hydantocidin moiety making hydrogen bonds with the
backbone oxygen of His 377 as shown in Figure 2a, (2)
an alcohol, and (3) an hdonor corresponding to two
hydroxyl groups located on the glucopyranose ring that
can interact with the side chain atoms of Asn 484 and
His 377 and each hydroxyl is involved both as hydrogen
donor and as hydrogen acceptor with these residues, and
(4) an hacc group corresponding to the amide oxygen of
the hydantocidin moiety and can interact with the side
chain of Leu 136 and a water molecule Wat 847; this
interaction was postulated36 to enhance the inhibitory
effect 3-fold. P23 involved (1) an alcohol group that can
interact with the side chain atoms of Asn 284 and Glu
672, (2) a slight pos_charge atom corresponding to the
carbonyl carbon of the â substituent of compound 45
(compound numbering is adopted from Table 1 of Pastor
et al.25), (3) an alcohol group interacting with the side
chain atoms of Asn 484 and His 377, and (4) a
hetero_non_ar_5_ring group present only in the spiro-
hydantoin derivatives (inhibitors 45, 46, 50, 51 in Tables
1 and 3 of Pastor et al.25), the most active compounds
in the series. Finally, for the successful inhibition of GP
b, the compounds should have, according to P14, (1) an
alcohol group that can interact with the side chain
oxygens of Glu 672, and the backbone nitrogens of Ser
674 and Gly 675, (2) a hetero_non_ar_6_ring corre-
sponding to the anomeric carbon (C1) of the gluco-
pyranose ring, (3) an alcohol group that can interact
with the side chain atoms of Asn 484 and His 377, and

Figure 2. (a) Schematic drawing of the interactions observed
in the crystallographic structure of the GP-spirohydantoin
complex.36,37 (b) Inhibitor 45 with highlighted four-point phar-
macophores P7, P23 and inhibitor 35 for pharmacophore P14
obtained using the ILP system. Inhibitor numbering is adopted
from Table 1 of Pastor et al. (1997). See text for detailed
descriptions of the highlighted areas labeled 1-4.

Table 5. Equation Obtained Using the Linear Regression
Method and Clausal Representation of the Pharmacophore for
the Three Lowest Conformations of Each GP Inhibitor

Regression Equation Obtained with CoMFA and ILP
Attributes and with Only ILP Attributes

r2
cvILP ) 0.72, pKi ) 2.25 + 1.39(P7) + 0.82(P14) + 0.84(P23)

ILP Clausal Representation of the Pharmacophore
P7

active(A):- hdonor(A,B,C),
alcohol(A,B,D), dist(A,D,C,4.8,1.0),
hdonor(A,B,E), dist(A,E,D,4.8,1.0), dist(A,E,C,2.9,1.0),
hacc(A,B,F), dist(A,F,C,2.3,1.0), dist(A,E,F,3.8,1.0),

dist(A,D,F,6.5,1.0).

P14
active(A):- alcohol(A,B,C),

hetero_non_ar_6_ring (A,B,D), dist(A,D,C,2.8,1.0),
alcohol (A,B,E), dist(A,E,D,3.8,1.0), dist(A,E,C,5.5,1.0),
amide (A,B,F), dist(A,F,C,4.9,1.0), dist(A,E,F,5.9,1.0),

dist(A,D,F,2.8,1.0).

P23
active(A):- alcohol(A,B,C),

pos_charge (A,B,D), dist(A,D,C,3.8,1.0),
alcohol(A,B,E), dist(A,E,D,4.7,1.0), dist(A,E,C,5.5,1.0),
hetero_non_ar_5_ring (A,B,F), dist(A,F,C,2.6,1.0),

dist(A,E,F,3.6,1.0), dist(A,D,F,1.8,1.0).
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(4) a C-amide group in the R-substituted position, as
reported by Pastor et al.,25 as the only R substituent that
leads to an increase in activity.

For the GP inhibitor dataset the regression equation
obtained with CoMFA and ILP descriptors is the same
as that obtained using only the new ILP indicator
variables. As previously stated for the thermolysin
dataset, the ILP attributes are as informative as the
CoMFA descriptors.

B. Results Using the 10 Lowest Conformations.
B.1. Thermolysin Inhibitors. The introduction of 10
conformers is straightforward because we simply have
to add the first-order atomic formulas atm and bond for
these new conformers. The results of the ILP approach
for the thermolysin inhibitors are summarized in Table
6. Analysis of model A, using the 10 lowest conformers
from the AM1 Monte Carlo search, produced a correla-
tion having a cross-validated r2

CV ) 0.80. The regression
equation obtained using the new ILP indicator variables
led to the four-point pharmacophores A′5, A′7, and A′14

(Figure 3; a prime symbol is employed to differentiate
from the results of previous models A and B using the
three lowest conformers). It is noteworthy that even
with the use of 10 conformers, the equations formed are
simple and easy to comprehend. These new pharma-
cophores select similar structural features found in
section A using the three lowest conformations. More
generally, each of these pharmacophores, using the 10
lowest conformers, requires a specific structural func-
tionality adding to the usual hydrogen donor and
acceptor interactions, i.e., all the molecules displaying
A′5 have in common a leucine side chain at the R′1
position and a terminal carboxylic acid. A nonaromatic
hydrophobic side chain (Leu, Ile, Ala) is the common
feature for A′7. And finally, all the molecules displaying
A′14 have a bulky R2 group (carbobenzoxyl moiety or
rhammose ring).

Model B yields a cross-validated coefficient r2
CV ) 0.84

using only the ILP descriptors. The regression equation
led to three pharmacophores: B′5, B′11, and B′12
(Figure 3b). Similar important structural features were
found between the pharmacophores found with the
three lowest conformations and these three. A feature
that has not been found previously is the presence of a
methyl group at the R′2 position, which seems to be more
likely than a bulky side chain. This new requirement
has not been reported yet in the literature. Hence, ionic
molecules exhibiting the B′5 pharmacophore have in
common a terminal carboxylate and most have a leucine
residue in the R′1 position. Pharmacophore B′12 is
represented by molecules possessing a nonbulky R′2
group.

By taking into account the 10 lowest conformers, the
regression equation in model A, obtained using the
CoMFA and ILP indicator variables, led to the same
four-point pharmacophores as that using the ILP de-
scriptors only. Importantly, using the CoMFA and ILP
descriptors led to lower cross-validated r2

CV ) 0.79 and
r2

CV ) 0.81 for models A and B, respectively. But in both
models, no CoMFA coefficient is found in the regression
equation. The absence of any CoMFA coefficient em-
phasizes the ability of ILP variables to be more infor-
mative than the CoMFA descriptors.

B.2. Glycogen Phosphorylase b Inhibitors. The
introduction of the 10 or 6 lowest conformers in the
analysis of the GP dataset led to a poorer cross-validated
squared correlation coefficient r2

CV ) 0.42 than that
found with only three conformers. By adding more
conformers in the analysis, we are introducing more
noise than informative data. Since the 51 GP ligands
have in common a glucopyranose ring, they are rela-
tively rigid and therefore present fewer possible con-
formers than the thermolysin inhibitors. Hence, the
“best” pharmacophores are found among the three
lowest conformers.

C. Results Using the Less Active Compounds as
Positive Examples. C.1. Thermolysin Inhibitors.
ILP is also able to learn rules from the less active
compounds by taking them as positive examples (swap-
ping the positive and negative examples). Thus, by
inclusion of the less active compounds as positive
examples in the dataset, pharmacophores can be found
to predict and understand the low inhibitory effects of
the compounds of a series. For model A, using the three

Table 6. Resulting QSARs Using the 10 Lowest Conformations
of Thermolysin Inhibitors

(a) Model A

Regression Equation Obtained with Only ILP Attributes
r2

cvILP ) 0.80, pKi ) 3.70 + 1.57(A′5) + 1.43(A′7) + 0.91(A′14)

ILP Clausal Representation of the Pharmacophore
A′5

active(A):- hdonor(A,B,C),
pos_charge(A,B,D), dist(A,D,C,3.6,1.0),
carboxylic_acid (A,B,E), dist(A,E,D,6.2,1.0),

dist(A,E,C,5.6,1.0),
hydrophobic(A,B,F), dist(A,F,C,3.1,1.0), dist(A,E,F,6.6,1.0),

dist(A,D,F,2.2,1.0).

A′7
active(A):- amide(A,B,C),

hdonor(A,B,D), dist(A,D,C,4.9,1.0),
hdonor(A,B,E), dist(A,E,D,2.9,1.0), dist(A,E,C,2.4,1.0),
pos_charge (A,B,F), dist(A,F,C,1.5,1.0), dist(A,E,F,1.4,1.0),

dist(A,D,F,3.6,1.0).

A′14
active(A):- amide(A,B,C),

neg_charge (A,B,D), dist(A,D,C,8.5,1.0),
hacc(A,B,E), dist(A,E,D,8.3,1.0), dist(A,E,C,4.2,1.0),
hdonor (A,B,F), dist(A,F,C,3.9,1.0), dist(A,E,F,2.4,1.0),

dist(A,D,F,9.3,1.0).

(b) Model B

Regression Equation Obtained
r2

cvILP ) 0.84, pKi ) 3.95 + 2.1(B′5) + 1.5(B′11) + 1.08(B′12)

ILP Clausal Representation of the Pharmacophore
B′5

active(A):- pos_charge (A,B,C),
neg_charge(A,B,D), dist(A,D,C,2.6,1.0),
carboxylate(A,B,E), dist(A,E,D,6.1,1.0), dist(A,E,C,7.8,1.0),
hydrophobic(A,B,F), dist(A,F,C,2.2,1.0), dist(A,E,F,6.3,1.0),

dist(A,D,F,3.0,1.0).

B′11
active(A):- amide(A,B,C),

methyl(A,B,D), dist(A,D,C,3.6,1.0),
hdonor(A,B,E), dist(A,E,D,3.7,1.0), dist(A,E,C,3.4,1.0),
neg_charge (A,B,F), dist(A,F,C,5.2,1.0), dist(A,E,F,2.4,1.0),

dist(A,D,F,6.1,1.0).

B′12
active(A):- amide(A,B,C),

neg_charge (A,B,D), dist(A,D,C,5.9,1.0),
methyl(A,B,E), dist(A,E,D,4.9,1.0), dist(A,E,C,5.5,1.0),
hacc (A,B,F), dist(A,F,C,6.3,1.0), dist(A,E,F,2.4,1.0),

dist(A,D,F,2.4,1.0).

406 Journal of Medicinal Chemistry, 2002, Vol. 45, No. 2 Marchand-Geneste et al.



lowest conformers, a set of “negative” rules are described
by the following predicates:

This clause means that a hydroxamic_acid (C(dO)-
NHOH) functional group leads to a decrease in the
activity. This is in agreement with the activity of the
compounds (Table 2); all the molecules including a
hydroxamic group represents the lowest pKi of the
dataset. A second important “negative” pharmacophore
has been found and is represented by the following
clause:

It asserts that an ar_6c_ring at the R′1 position is
expected for the less active compounds (e.g., in the
inhibitors bzs, âppp, pfoh, zf) instead of a leucine side
chain as shown in the previous “positive” pharmaco-

phores discovered. The ILP system for model B, using
the negative examples as positive, induced the following
important rule:

As previously, this rule points out that a phenyl group
at the R′1 position is expected to decrease the activity.
Moreover a carboxylate group, instead of a phosphonate
group, as a zinc binding site decreases the activity such
as in the ionic molecule bzs. Such clauses represent the
key features that can provide insight into the low
inhibitory effect of the less active compounds.

Using the 10 lowest conformers, we found a similar
set of clauses giving rise to the conclusion that a
carboxylic acid is not expected as a zinc binding func-
tional group, that a benzene ring should be avoided as
an R′1 group (such as in the bzs molecule), and that a
hydroxamic acid is not expected to enhance the activity.
The same “negative” rule is obtained for model B as the
one using only the three lowest conformers.

C.2. Glycogen Phosphorylase b Inhibitors. Two
rules represented by the following clauses were found
to be important:

Figure 3. (a) Model A, neutral inhibitor zfpla with highlighted four-point pharmacophores A′5, A′7, and A′14 obtained using the
ILP system for the 10 lowest conformers. (b) Model B, ionic inhibitor zfpla with highlighted four-point pharmacophores B′5, B′11,
and B′12 obtained using the ILP system for the 10 lowest conformers.

active(A):- hydroxamic_acid(A,B,C),
pos_charge(A,B,D), dist(A,D,C,1.5,1.0),

hdonor(A,B,E), dist(A,E,D,1.4,1.0),
dist(A,E,C,2.4,1.0), hdonor(A,B,F),

dist(A,F,C,1.4,1.0), dist(A,E,F,3.0,1.0),
dist(A,D,F,2.5,1.0).

active(A):- ar_6c_ring(A,B,C), neg_charge(A,B,D),
dist(A,D,C,1.4,1.0), hacc(A,B,E),

dist(A,E,D,3.8,1.0), dist(A,E,C,4.5,1.0),
hdonor(A,B,F), dist(A,F,C,5.6,1.0),

dist(A,E,F,4.6,1.0), dist(A,D,F,4.7,1.0).

active(A):- carboxylate(A,B,C), neg_charge
(A,B,D), dist(A,D,C,1.5,1.0), ar_6c_ring(A,B,E), dist

(A,E,D,3.8,1.0), dist(A,E,C,4.4,1.0), neg_charge
(A,B,F), dist(A,F,C,2.5,1.0), dist(A,E,F,2.9,1.0), dist

(A,D,F,1.5,1.0).
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The first rule means that an ether group is not expected
in substituents such as molecules 4, 8, 18, 33, 36, 39
(as in Table 1 of Pastor et al.25). The second rule asserts
that a neg_charge most likely corresponding to a ben-
zene ring, a cyano, or a fluoro group is not favorable as
a â substituent.

Conclusions

We have presented a new procedure for the formula-
tion of accurate, easily interpretable QSARs. ILP can
be used to improve the descriptive representation of the
chemical structures of a dataset under study. First, the
useful indicator variables are identified, then standard
linear regression is used to form the QSAR. The relevant
pharmacophores are selected from the regression equa-
tion, and their significance is given by the regression
coefficient. The addition of ILP indicator variables has
not made the QSAR equations any more complicated
than those obtained using standard methods. The most
important parameter in a CoMFA study is the relative
superimposition of molecules to a common spatial
reference frame whereby slight variations in the 3D
prealignment will yield very different results. The key
advantage of ILP here is that this method avoids the
explicit prealignment procedure because it uses rela-
tions instead of attributes to represent molecules.

Models A and B derived for the thermolysin dataset
led to significantly better results (P < 0.01) than with
the CoMFA analysis provided in previous work.31,32 The
pharmacophore points found using our ILP method
highlighted interactions that were consistent with the
previous studies of thermolysin. The observed rules
found using the ILP system for models A and B for the
3 or 10 lowest conformers led to the conclusion that the
basic structural requirements for the successful inhibi-
tion of thermolysin involve (a) a Zn-binding functional
group, most likely a phosphonamidate or phosphorami-
date moiety, (b) an aromatic hydrophobic R1 group such
as a phenylalanine side chain, (c) a bulky side chain at
the R2 position, which can be a carbobenzoxyl moiety
or a rhammose group, (d) a nonpolar aliphatic side chain
at the R′1 position found most likely to be a leucine
residue, and (e) amide groups and terminal carboxylate
group for hydrogen bonding to side chain residues in
the active site of the enzyme. From the reverse ILP
procedure, a hydroxamate functional group, or a car-
boxylate zinc binding functional group, and an aromatic
R′1 group produced a decrease in activity and are not
favorable for producing an inhibitory effect.

The requirements obtained for glycogen phosphor-
ylase inhibitors are in agreement with the results of the

GRID/GOLPE analysis of Pastor et al.25 They reported
that hydrogen bonds and polar interactions are impor-
tant for stabilizing the 280s loop and for maintaining
the enzyme in its inhibited T-state form. The presence
of polar interactions near His 377, Asp 283, and Asn
282 residues has been shown to enhance activity. The
P23 pharmacophore has clearly identified that a non-
aromatic five-member ring substituent, such as that
found in the spirohydantoin derivatives, enhances the
inhibitory effect. The negative rules obtained have
confirmed that a large aromatic or slightly negatively
charged â substituents decrease the inhibitory effect.
This is consistent with the proposed carboxyanion
intermediate formed during the catalysis in which
electron-withdrawing groups at the C1 position would
not be favorable for the stabilization of the proposed
transition state.40

This novel procedure to map pharmacophores and
form QSARs could be applied to any type of heteroge-
neous compounds where 3D prealignment of molecules
would be difficult.

Further work will be required to extend the existing
background knowledge to the active site of the protein-
ligand complex to obtain more informative pharmaco-
phores. This could be done simply by adding to the
existing background knowledge new general chemical
groups and interactions potentially important in the
active site.
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